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Figure 7. Introducing cDNAs of shelterin is sufficient to restore telomeric heterochromatin and proper telomere length in tls1Δ cells. (A) Western blot
analysis of shelterin protein levels. Asterisk indicates a non-specific band. (B) Serial dilution analyses to measure TEL::ura4+ reporter gene expression.
(C) ChIP analyses of H3K9me2 levels at TEL::ura4+, normalized to act1. Error bars represent standard deviation of three experiments. (D) Southern blot
analyses of telomere length with a telomere probe.
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expected, cwf14Δ was also identified as a factor required
for telomeric heterochromatin assembly in our telomere-
silencing screen (Figure 1D).

Another mutant identified in our screen is sde2Δ, which
was recently characterized as a factor required for telom-
ere silencing (36). Similar to tls1Δ, sde2Δ has no effect on
silencing at pericentric or the mating-type regions (36). In-
terestingly, Sde2 contains a region that shares sequence ho-
mology with splicing factor SF3A60 in humans, and it is
consistently identified in purifications of spliceosome com-
ponents, raising the possibility that it also regulates the
proper splicing of certain heterochromatin assembly factors
(24,54,57). The molecular function of Sde2 is currently un-
known, and it would be interesting to examine whether Sde2
is also a bona fide splicing factor and, if so, the mechanism
by which it regulates splicing.

The identification of Tls1, which regulates the proper
splicing of mRNAs of shelterin components rap1+ and
poz1+ to control telomeric heterochromatin assembly, fur-
ther corroborates the idea that splicing factors affect hete-
rochromatin assembly mainly by regulating the splicing of
heterochromatin assembly factors. However, it should be
noted that Tls1 is very unique in its function as a splic-
ing regulator. In contrast to Cwf14, which is consistently
identified in purification of spliceosome components and is
present in comparable amounts to other spliceosome sub-
units, Tls1 was not identified in purifications of spliceosome
components (24,54,57). Purification of overexpressed Tls1
showed high levels of one component of the U5-snRNP,
Brr2, whereas other components of the spliceosome were
not identified or were found only at extremely low levels
(Figure 4C). These results suggest that Tls1 either peripher-
ally or transiently associates with the spliceosome through
Brr2.

In accord with the data that Tls1 associates with spliceo-
some components, RNA sequencing analysis shows that
tls1Δ cells are defective in splicing of a subset of mRNAs.
Unlike cwf14Δ, which is a stable component of the core
spliceosome required for the splicing of RNAi components,
missplicing of which results in pericentric heterochromatin
defects, tls1Δ cells display no silencing defects at pericentric
regions, which is consistent with the fact that RNAi factors
are properly spliced in tls1Δ cells. Thus, Tls1 seems to be
selectively required for the splicing of rap1+ and poz1+ mR-
NAs. However, comparison of misspliced introns in tls1Δ
cells did not reveal any common features and the mecha-
nism for this selectivity is unknown.

Rap1 and Poz1 form a molecular link that connects Taz1
and Tpz1-Pot1 complex, which bind to double-stranded
and single-stranded portions of telomeric DNA, respec-
tively (6). The proper connection between these proteins
is essential for maintaining a state of telomeres refractive
to telomerase-mediated telomere lengthening (32). There-
fore, Tls1 might provide a novel mechanism for controlling
telomere length by disrupting the connection between these
two regions, by regulating the proper splicing of the adaptor
proteins Rap1 and Poz1.

Tls1 is a conserved protein present in diverse organisms.
Its human homologue, C9ORF78, was originally identified
as a factor that is overexpressed in hepatocellular carci-
noma and a number of other cancer cell lines, but not in

their normal tissue counterparts, indicating a possible role
of this protein in tumorigenesis (25). However, the molecu-
lar mechanism by which this protein functions is completely
unknown. Our result showing that Tls1 associates with the
spliceosome and that Tls1 regulates the splicing of shelterin
in fission yeast suggest that C9ORF78 is likely a splicing fac-
tor as well. Indeed, C9ORF78 was present in purifications
of mammalian spliceosome components (58–62), suggest-
ing the interaction is evolutionarily conserved. Given the
prevalence of splicing misregulation in cancer cells (63), it
is interesting to examine whether C9ORF78 also regulates
the proper splicing of mRNAs and whether such misregu-
lation underlies tumorigenesis.
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