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Abstract Chromatin is generally classified as euchro-

matin or heterochromatin, each with distinct histone

modifications, compaction levels, and gene expression

patterns. Although the proper formation of heterochromatin

is essential for maintaining genome integrity and regulating

gene expression, heterochromatin can also spread into

neighboring regions in a sequence-independent manner,

leading to the inactivation of genes. Because the distance

of heterochromatin spreading is stochastic, the formation of

boundaries, which block the spreading of heterochromatin,

is critical for maintaining stable gene expression patterns.

Here we review the current understanding of the mecha-

nisms underlying heterochromatin spreading and boundary

formation.
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Introduction

Eukaryotic genomic DNA is folded with histones and other

proteins in the form of chromatin, which regulates every

aspect of DNA metabolism, including transcription, repli-

cation, and DNA damage repair. Based on the level of

compaction, chromatin is divided into euchromatin and

heterochromatin. Euchromatin is generally gene rich, less

condensed, and associated with active gene transcription,

whereas heterochromatin is generally gene poor, highly

condensed, and refractory to the transcription machinery.

The discovery of position effect variegation (PEV) in the

fruit fly Drosophila melanogaster in the 1930s paved the

way to revealing the importance of chromatin in regulating

gene expression [1]. The white gene, which is responsible

for generating red color pigment in Drosophila eyes, nor-

mally resides in the euchromatic region. However, when

the white gene is placed adjacent to pericentric hetero-

chromatin due to chromosomal rearrangement, it is

variably silenced and the different expression states are

clonally inherited in different cell populations, resulting in

mottled eyes [2] (Fig. 1). A similar phenomenon termed

telomere position effect (TPE) was later observed in the

budding yeast Saccharomyces cerevisiae, in which reporter

genes placed near telomeres are also variably silenced and

clonally inherited, resulting in sectored colonies [3, 4]. A

general theme emerging from studies of these phenomena

is that heterochromatin can spread variable distances into

neighboring regions in a stochastic manner to regulate gene

expression and that once established these expression states

can be stably maintained through multiple cycles of cell

divisions.

The effect of heterochromatin on gene expression is not

limited to reporter genes. For example, the similarities

between transposon-mediated gene silencing in maize and

PEV in Drosophila led Barbara McClintock to propose that

transposable elements regulate the expression of neigh-

boring genes [5]. Recent studies in Arabidopsis show that

indeed transposable elements are sites of heterochromatin

assembly and influence the expression of nearby genes [6].

In humans, heterochromatin domains expand to cover

developmentally regulated genes during the differentiation

of stem cells, resulting in large changes in the chromatin

landscape [7]. But the variable nature of heterochromatin

spreading can potentially lead to inappropriate expression

of genes, which has been implicated in a number of serious
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human diseases [8]. For example, facioscapulohumeral

dystrophy (FSHD) is a neuromuscular disorder predomi-

nantly affecting the skeletal muscles of the face and arms

and has been correlated with deletions of D4Z4 repeats in

the chromosome 4q35 subtelomeric region. Although the

mechanism of this disease is still under debate, one

hypothesis is that the loss of these repeats compromises

heterochromatin spreading-mediated inactivation of adja-

cent genes [8, 9]. Therefore, the spreading of

heterochromatin needs to be tightly controlled, and the

discovery of boundary elements that can shield genes from

position effects demonstrates their important roles in reg-

ulating gene expression. Given that the mechanisms of

heterochromatin spreading and boundary formation are

best studied in yeasts, in which precise genetic manipula-

tions can be made, we will focus our review on studies

conducted in yeasts and discuss their relevance to mecha-

nisms in higher eukaryotes.

Heterochromatin spreading

It is well established that chromatin structure is regulated

by both chromatin remodeling activities and the modifi-

cation of histones and DNA [10]. Since many factors

involved in PEV and TPE have been characterized as

enzymes and proteins that regulate chromatin structure,

heterochromatin assembly and spreading has been a para-

digm for studying the roles of chromatin modifiers in

regulating stably maintained chromatin states [2, 4]. The

histones within heterochromatin regions are generally

devoid of acetylation and are often methylated at H3 lysine

9 (H3K9me) [11–13]. While histone deacetylation can

directly affect interactions between nucleosomes to form

higher-order chromatin structures [14], histone methylation

indirectly affects chromatin structure by either antagoniz-

ing acetylation at the same residue [15] or serving as a

binding site for the recruitment of chromatin proteins [16].

H3K9me recruits heterochromatin protein 1 (HP1) [12, 17,

18], which acts as both a structural component and an

adaptor for the recruitment of chromatin-modifying factors

[19]. In addition to histone methylation, the DNA within

heterochromatin regions is highly methylated in many

higher eukaryotes such as mammals and plants. Although

DNA methylation also contributes to heterochromatin

functions, the mechanisms by which it enables gene

repression are less well-understood [20].

Heterochromatin assembly can be divided into three

distinct steps: establishment, spreading, and maintenance

[21, 22]. Heterochromatin is established at nucleation

centers through the targeting of histone-modifying activi-

ties by transcription factors or non-coding RNAs.

Subsequently, heterochromatin spreads into neighboring

regions, mostly via a network of interactions among

chromatin proteins, resulting in the formation of large

heterochromatin domains independent of the underlying

DNA sequences. While the mechanisms of heterochroma-

tin establishment and maintenance have been extensively

studied, those that regulate heterochromatin spreading are

less well understood. One of the most attractive models is

that heterochromatin spreads by ‘‘oozing’’, in which repe-

ated cycles of histone modifications and the binding of

chromatin proteins result in an ‘‘inch worm’’-like spreading

of heterochromatin from the nucleation center until het-

erochromatin-associated proteins coat the extended domain

[23]. Once these domains are formed, they are maintained

through interactions among chromatin proteins similar to

those involved in heterochromatin spreading [24].

Heterochromatin assembly and spreading in budding

yeast

In budding yeast, heterochromatin is formed at telomeres

and the silent mating type locus, mediated by the Sir (silent

information regulator) protein complex, composed of Sir2,

Fig. 1 Position effect

variegation in Drosophila. The

normally euchromatic white

gene is placed close to the

pericentric heterochromatin due

to X-ray induced chromosome

inversion. During early

Drosophila development,

heterochromatin spreading in

some progenitor cells results in

the silencing of white. Such

expression is clonally inherited

in all the progenies of the same

cell, resulting in white patches

of the adult eye
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Sir3, and Sir4 [22, 25]. Sir2 is a histone deacetylase with

main activity on H4K16 [26–28], the acetylation of which

directly regulates higher-order chromatin folding in vitro

[14] and plays a major role in heterochromatin function

in vivo [13, 29]. Sir3 and Sir4 preferentially interact with

histone tails devoid of H4K16ac [30–32]. At telomere

regions, telomere DNA-binding protein Rap1 and the DNA

end-binding complex Ku70/Ku80 recruit the Sir complex

[33–36]. At the silent mating type locus, Rap1, Abf1, and

the origin recognition complex (ORC) recruit the Sir

complex to nucleation sites termed silencers [36–41]. In

either case, Sir2 subsequently deacetylates histone H4K16,

allowing Sir3 and Sir4 to bind. Sir3 oligomerizes and

recruits more Sir2 to deacetylate H4K16 in the adjacent

nucleosomes and thus facilitates the spread of the entire Sir

complex [22, 25]. The main evidence supporting such a

model include that Sir proteins cover the entire hetero-

chromatin domain and that silencing spreads continuously

through the domain [42–44] (Fig. 2). A distinct silencing

mechanism operates at repressive rDNA loci, which is

dependent on Sir2, but not Sir3 or Sir4, and spreads in a

unidirectional manner controlled by Pol I transcription

[45–48].

Heterochromatin assembly and spreading in fission

yeast

In fission yeast, heterochromatin forms at repetitive DNA

elements in the centromeres, telomeres, and the silent

mating type region [19]. Histones at these regions are not

only hypoacetylated by a number of histone deacetylases

(HDACs), but are also methylated on H3 Lys 9 (H3K9me)

by the histone methyltransferase Clr4 [12, 49]. Similar to

budding yeast, these histone-modifying enzymes can be

targeted to DNA repeats by sequence-specific DNA-bind-

ing proteins to establish heterochromatin [50–53].

Interestingly, the RNA interference (RNAi) pathway is also

required for heterochromatin establishment at repeat

regions [54]. The DNA repeats are transcribed by RNA

polymerase II during the S phase of the cell cycle [55–58].

These transcripts are converted to double-stranded RNAs

by the RNA-dependent RNA polymerase complex and then

processed by Dicer into small interfering RNAs (siRNAs)

[59, 60]. These siRNAs are loaded into the Argonaut

protein (Ago1) in the RITS (RNA-induced transcriptional

gene silencing) complex, which is targeted to repeat

regions through base pairing between siRNAs and nascent

transcripts [61–63]. RITS directly associates with the Clr4

complex to initiate H3K9me [64], which further recruits

HP1 proteins such as Swi6 and Chp2 [12, 65].

The spreading of heterochromatin from initiation sites

requires Swi6, and in its absence H3K9me is restricted to

heterochromatin nucleation centers [52, 66]. Because

mammalian and fly HP1 interacts with histone H3K9

methyltransferases [67, 68], it was proposed that a similar

interaction between Swi6 and Clr4 could result in the

recruitment of additional HMTases, which in turn would

modify histones of adjacent nucleosomes [66]. In addition,

Clr4 contains a chromodomain that recognizes H3K9me,

an interaction that could lead to heterochromatin spreading

through repeated binding of H3K9me and methylation of

the adjacent nucleosomes [69]. Elegant biochemical anal-

yses demonstrate that Clr4 preferentially binds to

dimethylated H3K9 while Swi6 prefers trimethylated

H3K9, avoiding the potential competition between Clr4

and Swi6 and allowing efficient spreading of heterochro-

matin [70]. Again, the ‘‘inch worm’’ spreading model is

supported by the fact that Swi6 and Clr4 are localized

continuously throughout entire heterochromatin domains

[69, 71] (Fig. 3).

In addition to the self-propagation cycles of H3K9me,

heterochromatin spreading in fission yeast also requires

complex crosstalk among many chromatin proteins. Like

budding yeast, fission yeast also possesses Sir2, which is

required for heterochromatin spreading, although func-

tional homologues of Sir3 and Sir4 are absent [72–74]. It is

possible that Sir2-mediated deacetylation of H4K16 regu-

lates chromatin compaction, thus bringing Clr4 closer to

adjacent nucleosomes [74]. Moreover, Swi6 associates

Fig. 2 The stepwise assembly of heterochromatin in budding yeast.

a Heterochromatin establishment is achieved by targeting of the Sir

protein complex to telomeres or silencers at the silent mating type

locus through DNA-binding proteins where Sir2 deacetylates H4K16.

b Deacetylated histones increase the affinity of Sir3 and Sir4 for

chromatin and recruit additional Sir complex. Sir2 then deacetylates

adjacent nucleosomes to allow heterochromatin spreading. c The

formation of an extend heterochromatin domain that is covered by Sir

complex
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with the histone deacetylase complex SHREC to deacety-

late histone H3K14 and remodel chromatin to promote the

spreading of H3K9me [75–78]. Meanwhile, structural and

kinetic studies reveal that Swi6 undergoes a conforma-

tional change to a spreading competent state when it binds

to methylated H3K9 [79].

Additional models for heterochromatin spreading have

also been proposed based on studies in fission yeast. For

example, spreading can be accomplished by direct or

indirect coupling of CLRC to RNA polymerase II, allowing

H3K9me in the wake of transcription [23]. In addition, the

association between the CLRC and DNA polymerase e
suggests that heterochromatin spreads by associating with

the leading strand DNA polymerase following RNAi-

mediated release of Pol II that restarts stalled replication

forks [80, 81].

Heterochromatin assembly and spreading in higher

eukaryotes

Heterochromatin spreading in higher eukaryotes is less

well defined, mostly due to the highly repetitive nature of

the DNA sequences that form heterochromatin prevent

precise genetic manipulations. The interactions between

HP1 and H3K9 methyltransferase of the SUV39 family and

the chromodomain of SUV39 are conserved, so it is pos-

sible that the inch worm spreading model functions in other

systems as well [11, 68, 82]. In contrast, more is known

about Polycomb protein-mediated gene silencing, which

shares some similarities with heterochromatin formation

and spreading and thus is often termed facultative

heterochromatin.

Polycomb-silenced regions are usually characterized by

the trimethylation of histone H3 lysine 27 (H3K27me3)

[83]. The highly conserved Polycomb Repressive Complex

2 (PRC2) contains the SET domain-containing protein

EZH2 (EZ in Drosophila) as the catalytic subunit respon-

sible for H3K27me3 [84–87]. PRC2 also contains the

histone-binding proteins RbAp46/48, the DNA-binding

protein SUZ12, and EED (ESC in Drosophila). In Dro-

sophila, PRC2 is recruited to Polycomb response elements

(PREs) by sequence-specific DNA-binding proteins. In

mammals, the binding sequence is less well defined and

long non-coding RNAs play important roles in targeting

PRC2 to specific sites [83]. The mechanism by which

H3K27me3 regulates gene expression is not well under-

stood. H3K27me3 recruits chromodomain protein

Polycomb, which is part of the Polycomb Repressive

Complex 1 (PRC1) [88, 89]. PRC1 also contains an E3

ubiquitin ligase that ubiquitylates K119 of H2A, which also

contributes to gene silencing [90].

Fig. 3 The establishment and spreading of heterochromatin in fission

yeast. a Heterochromatin establishment is achieved by sequence-

specific DNA-binding proteins or RNAi-mediated targeting of histone

methyltransferase CLRC to repetitive DNA elements, leading to local

H3K9 methylation. b H3K9me recruits Swi6, which might facilitate

the recruitment of additional CLRC. The chromodomain of Clr4 also

recognizes H3K9me and facilitates CLRC recruitment. CLRC then

methylates adjacent nucleosomes, leading to heterochromatin spread-

ing. SHREC associates with Swi6 and deacetylate histones to promote

heterochromatin spreading. c The formation of an extended hetero-

chromatin domain that is covered by Swi6, CLRC and SHREC

J. Wang et al.
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Importantly, PRC2 binds to H3K27me3 via the WD40

repeats of EED and stimulates methylation of nearby his-

tone H3 on Lys 27 [91, 92], indicating that PRC2-mediated

H3K27 methylation is propagated in a manner similar to

that of HP1-H3K9 methylation. However, high-resolution

mapping of H3K27me3 and Polycomb proteins showed

that while H3K27me3 marks large chromosome domains,

PRC2 is mainly concentrated at the PREs [93]. Thus it is

unlikely that an inch worm spreading model applies. The

exact mechanism of H3K27me3 spreading is still

unknown, but it has been suggested that spreading is

achieved by local diffusion of PRC2 or by the formation of

chromosome loops [23, 94].

Mechanisms of boundary formation

When heterochromatin spreads into surrounding regions

independently of DNA sequences, it can affect the expres-

sion of nearby genes to varying degrees depending on the

extent of spreading. In certain cases, such variation of gene

expression could allow for the development of new traits that

help organisms adapt to new environments, facilitating

evolution. However, in most cases, the disruption of normal

gene expression patterns severely compromises an organ-

ism’s fitness or health, as seen in a number of human diseases

linked to uncontrolled heterochromatin spreading [8].

Additionally, studies in Neurospora show that disrupting

heterochromatin boundary formation leads to growth defects

linked to the unchecked spreading of silenced chromatin and

DNA methylation into genes outside of the normal regions,

further highlighting the importance of properly restraining

heterochromatin spreading for cellular fitness [95]. Thus it is

essential for spreading to be tightly regulated in order to

maintain stable gene expression profiles. Generally, hetero-

chromatin regions are flanked by DNA sequences termed

boundary elements, which form fixed borders accompanied

by sharp transitions in histone modification profiles. Such

elements result in the precise determination of epigenetic

states among closely arranged chromosome loci, even when

heterochromatin protein levels change. In other cases, bor-

ders are determined by the local balance of heterochromatin

and euchromatin proteins, which tends to differ between

cells. Such boundaries are termed negotiable borders [96].

Negotiable borders

A distinguishing feature of negotiable borders is that they

are not established at a specific DNA sequence, but at a

transition region defined by the balance of different pro-

teins and histone modifications associated with

heterochromatin and euchromatin [96]. For example, in

budding yeast, the balance between histone acetyltrans-

ferase Sas2-mediated acetylation of H4K16 and Sir2-

mediated deacetylation of the same residue defines the

borders of heterochromatin at telomeric regions [29, 97].

Either loss of sas2? or overexpression of Sir3 leads to

increased heterochromatin spreading [42, 43]. In addition,

loss of other histone modifications or proteins usually

enriched in euchromatin may also result in increased het-

erochromatin spreading. For example, loss of the

euchromatin-associated bromodomain protein Bdf1 or

histone variant H2A.Z results in expanded heterochromatin

regions [98, 99]. As a result of such competition, nego-

tiable borders are associated with frequent changes of

epigenetic states [100]. The classical example of PEV in

Drosophila, where white is silenced in a portion of pro-

genitor cells during early development, also suggests that

heterochromatin spreads over varying distances rather than

being constrained to a defined location. In addition, many

of the factors identified as regulators of PEV affect het-

erochromatin spreading in a dosage-dependent manner

[101], which also points to the importance of maintaining

proper heterochromatin–euchromatin protein balance as a

determinant of the distance of heterochromatin spreading.

Thus one important way to regulate heterochromatin

spreading is by controlling the availability of heterochro-

matin proteins. Indeed, heterochromatin protein levels

appear limiting in diverse organisms. For example, in fission

yeast, ectopic heterochromatin assembly through artificial

targeting of Clr4 to DNA or exogenously introduced siRNAs

can only succeed when Swi6 is overexpressed or endogenous

heterochromatin structures are compromised to release

silencing proteins [53, 102, 103]. Moreover, overexpression

of Swi6 increases the conversion rate of a less stable het-

erochromatin domain at the mating type region [104] and

allows the cells to bypass the requirement of RNAi for

pericentric heterochromatin assembly [53].

On the other hand, endogenous heterochromatin regions

with negotiable borders make them ideal as ‘‘sinks’’ to

limit the availability of heterochromatin proteins in both

budding and fission yeast [53, 105–108]. Increases in het-

erochromatin proteins predominately localize to telomeres,

leading to expansion of telomeric heterochromatin

domains. In contrast, compromising heterochromatin

assembly at telomeres or rDNA results in the release of

heterochromatin proteins and increases the incidence of

ectopic heterochromatin assembly.

Fixed borders

In most cases, specific DNA elements demarcate the bor-

ders of heterochromatin regions and function as boundaries
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to prevent spreading of heterochromatin. These boundaries

precisely define chromatic regions, resulting in consistent

inheritance of epigenetic states, regardless of varying het-

erochromatin protein levels. A general theme is that these

mechanisms all converge on disrupting heterochromatin-

associated histone modification cycles (Fig. 4).

Recruitment of histone-modifying activities to directly

antagonize heterochromatic histone modifications

Since heterochromatin spreading depends on repeated

cycles of histone modifications, installation of incompati-

ble histone modifications at the boundary regions can

effectively block heterochromatin spreading (Fig. 4a).

Indeed, in budding yeast, the boundary element at the silent

mating-type locus recruits histone-modifying activities

associated with euchromatic regions, and artificial tethering

of Sas2 is sufficient to establish a heterochromatin

boundary [109–111]. In fission yeast, the pericentric het-

erochromatin boundary recruits a histone demethylase

complex containing Lsd1 [112]. Lsd1 was originally

identified in humans as a demethylase specific for H3K4

[113], but also demethylates H3K9 in specific contexts

[114]. The fission yeast Lsd1 complex localizes at the

pericentric boundary regions and demethylates H3K9me to

prevent heterochromatin spreading [112]. The chicken b-

globin gene cluster is adjacent to a *16 kb condensed

heterochromatin region and the 50 DNase I hypersensitive

site HS4 between these two regions also has barrier

activity. Transcription factors USF1 and USF2 bind to this

element and recruit histone-modifying enzymes such as

H3K4-specific histone methyltransferase Set1, and histone

H3 acetyltransferase PCAF to block heterochromatin from

spreading into the b-globin locus [115].

Protection of preexisting histone modification profiles

In addition to recruiting histone-modifying enzymes to

actively counteract heterochromatin-associated histone

modifications, protecting existing euchromatic modifica-

tions is also critical for establishing a heterochromatin

boundary (Fig. 4b). In budding yeast, the bromodomain

protein Bdf1, which protects histone H4 tail acetylation, is

required for preventing heterochromatin spreading at telo-

meres to establish negotiable borders [98]. Another

budding yeast bromodomain protein Yta7 is involved in

Fig. 4 Mechanism of boundary function. a Boundary elements

recruit histone-modifying activities. b Boundary elements recruit

proteins that protect euchromatic modifications. c Nucleosome-free

regions prevent the spreading of heterochromatin modifications to

establish heterochromatin boundaries. d High rate of histone turnover

prevents the spreading of histone modifications. e RNA-mediated

eviction of heterochromatin protein Swi6 to prevent heterochromatin

spreading. f Boundary elements cluster and associate with nuclear

structures to form chromatin loops

J. Wang et al.
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restricting heterochromatin spreading to the silent mating

type locus boundary [116, 117]. Importantly, mutations in

the bromodomain lead to heterochromatin spreading out-

side its boundaries [118], although the acetylation events

that mediate the binding of Yta7 have not been identified.

In fission yeast, a double bromodomain protein Bdf2 is

specifically recruited to a repeat sequence termed IRC that

marks the border of pericentric heterochromatin [74]. Bdf2

is recruited to IRC by a JmjC domain-containing protein

Epe1, which is highly enriched at the boundary region [74,

119, 120]. Bdf2 protects acetylated H4K16, which is

essential for counteracting Sir2-mediated deacetylation to

block heterochromatin spreading [74].

Nucleosome-free regions

Since heterochromatin spreading depends on cycles of

histone modifications of adjacent nucleosomes, it is rea-

sonable to expect that nucleosome-excluding sequences

can function as boundaries due to the separation of sub-

strate from histone-modifying enzymes, thus blocking the

spreading of heterochromatin (Fig. 4c). Both the UAS

sequence and LexA binding sites, which recruit transcrip-

tion factors and exclude the formation of nucleosomes,

have been shown to block the spreading of heterochromatin

in budding yeast [121, 122]. Most importantly, certain

DNA sequences that are known to exclude nucleosome

assembly can also efficiently establish heterochromatin

boundaries [121].

Regulating histone turn over rates

Heterochromatin regions are generally associated with

slow turn over of histones [123, 124], which allow stable

interaction between H3K9me and HP1/SUV39 to promote

heterochromatin spreading. Therefore, increasing the his-

tone turnover rate can effectively form boundary by

breaking the histone modifications cycle required for het-

erochromatin spreading (Fig. 4d). In budding yeast, the

boundary regions are indeed associated with high histone

turnover rate [125]. In Drosophila, the GAGA factor directs

histone H3.3 replacement that prevents heterochromatin

spreading [126] and boundaries of cis-regulatory domains

and GAGA binding sites are generally associated with high

turn over rate of histones [127, 128].

Transcription

Transcription plays two separate roles in regulating

nucleosome dynamics [129], which might contribute to

boundary function. First, the transcription machinery is

associated with diverse histone-modifying activities, some

of which can counteract the histone modifications of het-

erochromatin regions. In addition, transcription increases

the rate of histone turnover, which can limit the histone

modification cycles required for heterochromatin

spreading.

Transcription by RNA Polymerase III, presumably

through the tRNA genes it transcribes, is particularly rele-

vant to boundary function. In budding yeast, tRNA genes are

required for boundary function at the silent mating type and

the rDNA locus [109, 111, 130, 131], and in fission yeast,

tRNA genes found at pericentric heterochromatin borders

are also critical for limiting heterochromatin spreading [132,

133]. In mammals, tRNA genes also function as boundary

elements, indicating an evolutionarily conserved role for

tRNA genes in preventing heterochromatin encroachment

[134, 135]. Mutation of the RNA pol III machinery in bud-

ding yeast, including general transcription factors TFIIIA,

TFIIIC, and Pol III itself all resulted in defective boundary

function, suggesting that Pol III transcription is essential for

proper boundary function [109]. However, tRNA genes may

play addition roles in boundary function independent of Pol

III transcription. For example, at the silent mating type locus

in fission yeast, the boundary region inverted repeat (IR)

contains B-box sequences that recruit TFIIIC, but no Pol III

was detected at this locus. TFIIIC mediates the clustering of

chromosome loci at the nuclear periphery, which might

contribute to boundary function through the formation of

chromosome loops [136]. Similarly, in budding yeast,

TFIIIC can also function as a boundary element independent

of Pol III transcription [137].

In mammals, short interspersed nuclear elements (SINEs)

also act as boundary elements by regulating transcription

[138]. The murine growth hormone (GH) gene is regulated

by the nearby SINE B2 repeat, which is transcribed by both

Pol II and Pol III, though in opposite directions. During early

stages of embryonic development, adjacent heterochromatin

spreads past the B2 element to silence GH expression. In

later stages of development, heterochromatin spreading is

blocked by B2 element, allowing GH expression. Mutations

of the promoters compromised boundary function, suggest-

ing that transcription is critical for B2 boundary activity

[138]. Similarly, the mouse SINE B1-X35S also has

boundary activity, which is dependent on the transcription of

this sequence [139].

Although the process of transcription seems to play an

important role in boundary function, the transcripts them-

selves might also directly participate (Fig. 4e). For

example, RNA directly competes with H3K9me for bind-

ing to the chromodomain of Swi6 [140]. Thus, the RNA

transcripts at boundary regions may directly affect het-

erochromatin-mediated histone modification amplification.

Boundary elements and heterochromatin spreading

123



Consistent with such an idea, the pericentric IRC boundary

of fission yeast is transcribed and mutations of the Swi6

RNA-binding residues result in heterochromatin spreading

[141].

Nuclear structures

Another mechanism by which heterochromatin spreading

can be blocked is through the spatial organization of

chromatin. Physically separated chromatin domains can be

achieved by the clustering of boundary elements or by

interactions between boundary elements and nuclear

structures (Fig. 4f). For example, the gypsy insulator

complex in Drosophila, which was found to protect

transgenes from position effects, localizes to only 20–25

sites in the nucleus despite having over 500 binding sites

[142, 143]. Similarly, in fission yeast, the TFIIIC complex

binding sites form clusters in the nucleus [136]. Given that

the TFIIIC binding sites at the silent mating type region are

critical for boundary function without local recruitment of

Pol III, TFIIIC-mediated clustering may establish hetero-

chromatin boundaries by separating chromatin domains

[136]. In mammals, genome-wide analyses revealed that

CTCF (CCCTC binding Factor) binding sites frequently

flanked chromosome domains containing the repressive

H3K27me3, often in a cell-specific manner, indicating that

CTCF may regulate the spreading of facultative hetero-

chromatin domains [144, 145]. Although CTCF is mainly

known for its function as an enhancer blocker by regulating

the 3D organization of the genome to control interactions

between distant loci, it may perform similarly to block

heterochromatin spreading [146–153]. CTCF also associ-

ates with cohesins, which have been shown to affect

chromosomal architecture and organization [154, 155].

Clusters of boundary elements are often found near the

nuclear periphery, suggesting that they may be tethered to the

nuclear membrane. Nuclear pore proteins have been impli-

cated in tethering DNA and may play a role in boundary

activity. In an elegant ‘‘boundary trap’’ genetic screen, Ishii

et al. screened a chimeric protein library for proteins that

showed boundary activity when fused to a DNA-binding

protein. One of the proteins identified, Cse1, was found to

localize to the nuclear periphery, but only in the presence of

the nuclear pore protein Nup2 [156]. It would be interesting to

identify other nuclear membrane or nuclear matrix compo-

nents that regulate the clustering of other boundary elements.

Conclusions and future directions

Since the major mechanism of heterochromatin spreading is

through repeated cycles of histone modifications and binding

of chromatin proteins, it is not surprising that most boundary

elements function by blocking this cycle by, for example,

recruiting antagonizing histone-modifying activities, pro-

tecting euchromatic modifications, creating nucleosome-free

regions, altering chromatin dynamics through transcription,

and tethering DNA to nuclear structures to form chromatin

loops. Although each mechanism seems to be sufficient,

multiple mechanisms function at each boundary. For

example, the well-studied tRNA gene boundary incorporates

recruitment of histone-modifying enzymes, generation of

nucleosome-free regions, transcription, and TFIIIC-medi-

ated chromatin clustering. Such redundancy might function

at other heterochromatin boundary regions to ensure the

efficient blocking of heterochromatin spreading.

Although the chromatin modification cycle is an

attractive model to explain heterochromatin spreading,

there are exceptions that suggest addition mechanisms [23].

For example, in Drosophila, H3K27me3 domains are much

broader than that of PRC2 and PRC1 [93] and in budding

yeast, rDNA silencing requires Sir2, but not Sir3 or Sir4

[45–47]. Moreover, in some cases, heterochromatin

spreading is not continuous. For example, at native bud-

ding yeast telomeres, the spreading of heterochromatin

skips reporter genes flanked by boundary elements [157,

158]. Therefore, a better understanding of the mechanism

of heterochromatin spreading will provide further insights

into how boundaries are formed.
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